Mirkin

Guest post: SmartFlares fail to reflect their target transcripts levels

Czarnek&BeretaThis is a guest post by Maria Czarnek and Joanna Bereta, who have just published the following article in Scientific Reports entitled SmartFlares fail to reflect their target transcripts levels

We got the idea of using SmartFlare probes when working on generating knockout cells. In the era of CRISPR-Cas9 genome editing, the possibility of sorting out knockout cells based on their low target transcript content (mRNAs that contain premature stop codons are removed in a process called nonsense-mediated decay) instead of time-consuming testing of dozens or thousands of clones would be a great step forward. SmartFlare probes seemed to be just the ticket: no transfection, lysis or fixation needed; moreover, the probes were supposed to eventually leave the cells. We were full of hope as the first probes arrived. (more…)

Advertisements

A RESPONSE FROM CHAD MIRKIN’S GROUP [follow up #1/n]

Some readers might wonder why I am going on about this, so let me tell you: this is a considerably more important story than Stripy Nanoparticles Revisited. If, as I am arguing, some of this science is shaky, then it is not only the way we evaluate scientists and spend public money which are put into question, but the foundation of ongoing clinical trials.

Back to basics: in the section of Mirkin’s group PhD dissertation (previous post) that respond to our critique of their work on Spherical Nucleic Acid / SmartFlare / StickyFlare, they wrote the following:

Additionally, since the commercialization and sale of the nanoflare platform under the trade name Smartflare (Millipore), dozens of researchers around the world have participated in successful sequence-specific gene detection.[80]

Reference [80] correspond to six (half a dozen) articles, 80a to 80f (see below for details and links). Out of these six, only two are actual research papers, and, for both, the SmartFlares are a very minor addition to the work. Out of these two, only one is completely independent of Mirkin/EMD Millipore (the other one comes from Northwestern).

80a) is not primary research; it is an advertorial produced by EMD Millipore.

80b) is not primary research: it is a 300 words congress abstract (no figure). A follow up paper by the same group is discussed here.

80c) is a review and it is a collaboration between Northwestern (Mirkin’s University) and EMD Millipore. CoI statement from the paper: “D. Weldon is the R&D Manager at EMD Millipore responsible for the production of SmartFlares. Patents related to therapeutically targeting Nodal in tumor cells have been awarded to E.A. Seftor, R.E.B. Seftor, and M.J.C. Hendrix.

80d) is a research paper. It does not show in any way that SmartFlares work. It assumes it does. The SmartFlare is a minor part of the article.

80e) is not primary research: it is an advertorial in a magazine funded by company advertising (including EMD Millipore in that very issue). The author is a journalist working for the magazine, not a practicing scientist.

80f) is a research paper. It does not show in any way that SmartFlares work. It assumes it does. SmartFlares are a very minor part of the article. The authors are from Northwestern, i.e. Mirkin’s University.

 

A response from Chad Mirkin’s group

Well nearly. Possibly as close as we might get.

If you have followed the Spherical Nucleic Acid / SmartFlare / StickyFlare story on this blog, you will know that we have raised doubts about the endosomal escape of these nanoparticles which are supposed to reach the cytosol of cells where they could detect mRNAs. We have even published an article on this topic. The Mirkin group has developed the technology and it has been commercialized four years ago for the live cell detection of mRNAs by EMD Millipore.

One PNAS paper on the topic was Briley et al (see here for letter to PNAS and what happened to that letter). In his PhD dissertation (Briley, W. E. (2016), William Edward Briley respond to our criticism. I reproduce the relevant section below. One might note that there is an incredibly simple way to determine the localisation of these particles inside the cells: electron microscopy, a technique which has been used for this exact purpose for over 50 years. We have used it. The results were unambiguous.

2.3 Commentary on the Endosomal Escape of SNAs
Though the endosomal escape of SNA nanostructures such as the Nanoflare and stickyflare is evident based upon their ability to provide sequence-specific information regarding RNA levels and locations within cells, one researcher has concluded that SNAs cannot escape from endosomes.[75] That researcher [That’s me!] is ignoring the many papers now that use such architectures for sequence-specific cell-sorting experiments. Indeed, if these architectures, which are taken up by scavenger-receptor mediated endosomal pathways,[68a] do not escape the endosome, then it is difficult to understand the reports by the many groups who have documented the sequencespecific function of SNAs (all of which require endosomal escape), in antisense gene regulation,[12, 44-45, 53] siRNA gene regulation,[20, 68b, 76] nanoflare gene detection,[47, 67a, 67c, 77] and sticky-flare gene detection.[78] Perhaps the best demonstration of this sequence specificity is in the function of the multiplexed Nanoflare.[67a] This nanoconjugate, discussed in chapter 1, contains two targeting sequences specific to two different genes (actin and survivin). When cells treated with multiplexed nanoflares were subjected to siRNA that specifically knocked down the expression of survivin, a corresponding decrease of fluorescence was observed in the nanoflare’s survivin-associated fluorescence (cy5), but not the actin-associated fluorescence (cy3) compared to control.[67a] Likewise, when cells were subjected to actin-targeting siRNA, a decrease in actin-associated fluorescence was observed, with no decrease of survivin-associated fluorescence.
These results indicate that the detection by nanoflares is unique to the targeted mRNA transcript. To rule out any possible effects of the fluorophores, the Cy5 and Cy3 dyes were switched to the other gene (actin-cy5, survivin-cy3), and again the corresponding sequence-specific responses were observed. Importantly, since the development of the multiplexed nanoflare, other research groups have independently developed nanoflare-like structures capable of sequence-specific detection of 3,[57] and even 4[79] genes simultaneously. Additionally, since the commercialization and sale of the nanoflare platform under the trade name Smartflare (Millipore), dozens of researchers around the world have participated in successful sequence-specific gene detection.[80]
Further evidence of SNA endosome escape can be seen visually through analysis of the sticky-flare construct. If sticky-flares were incapable of escaping endosomes, one would expect consistent colocalization with endosomes. However, this is not the case. The patterns of β-actin targeted sticky-flares, when used in HeLa cells, instead exhibit localization around mitochondria. If such structures were limited to endosomes, it is inconceivable that they would co-localize with specific organelles. This is consistent with mitochondrial localization of multiple RNAs which
has also been identified by other groups, using multiple techniques, in HeLa cells.[74] Sticky-flare release from the endosome was further confirmed by designing sticky-flares targeting a second sequence, a U1 short nuclear RNA (snRNA). U1 snRNA is known to traffic from the cytoplasm to the nucleus. Indeed, cells treated with U1-targeting sticky-flares exhibited specific fluorescence within the nucleus. The pattern observed indicates nuclear localization through endosomal escape and sequence-specific tagging of an RNA that is actively transported into the nucleus. Again, this would not be possible if such structures were confined exclusively to endosomes. Speculation that SNAs do not escape endosomes has been fueled by the observation that the fluorescence pattern of β-actin in MEFs is punctate, which has been interpreted as an indication that the sticky-flares are simply trapped in endosomes. However, β-actin is well known to exhibit punctate fluorescence in many cases, an observation made by others in multiple cell lines, including MEFs.[81] Punctate fluorescence is very common in RNA-labeling studies and well known by researchers familiar with FISH.82 This is due to the fact that RNA is often packaged into large RNA-containing granules, which facilitates transport and translational control of the included transcripts.[82b, 83] Such packaging into granules has been extensively studied using β-actin mRNA. Thus, the fact that sticky-flares targeting β-actin were packaged into granules as previously observed, while U1-targeting sticky-flares were specific to the nucleus in the same cell line, demonstrates the functionality of the construct.
Taken together, the success of the many groups who use flare architectures for the detection and knockdown of RNA in cells, and the work of dozens of labs studying related nanoparticle constructs, provide unambiguous evidence of the ability for such architectures to escape the endosome and participate in reactions exclusive to the cytosol. The mechanism of endosomal escape for nanoparticle-based vehicles is currently unknown and is an interesting and important question that is actively being investigated by many in the field.[84]

ref2ref3

Briley, W. E. (2016). Investigation and manipulation of the local microenvironment of spherical nucleic acid nanoconjugates (Order No. 10117274). Available from ProQuest Dissertations & Theses Global. (1795522748). Retrieved from https://search.proquest.com/docview/1795522748?accountid=12117

Chad Mirkin on Nano Hype

Chad Mirkin did a Reddit AMA yesterday (h/t Neil Withers).

Capture

 

(highlight mine)

Of these 1800 commercial products, 1700+ are in fact a single product, the famous Spherical Nucleic Acids/SmartFlares.

More on this blog and our paper (The spherical nucleic acids mRNA detection paradox) here.

With the risk of being accused of having cynical views…

A $58M question

Nanosphere, one of the three companies founded by Chad Mirkin, has been bought today for $58M by Luminex. Is this another triumph of the Spherical Nucleic Acids?

Nanosphere was founded in 1999 by Dr. Robert Letsinger and Dr. Chad Mirkin and went public in 2007 (NASDAQ: NSPH). In 2004, MIT technology reports “a powerful but cheap nanotech tool available this year could test for everything from genetic diseases to heart-attack signs.”

Mirkin says that the Nanosphere technology is orders of magnitude more sensitive than other detection techniques, as well as fast and accurate. What’s more, the technology detects DNA or proteins directly, does not require expensive and time-consuming preparation of blood samples, and can test for multiple targets at once. “It will completely change the way the world looks at diagnostics, he says. “I’m very confident that we’re going to see a lot of new diagnostic tools come out of this.”

However, 12 years after this statement and 17 years since foundation, the company is still to make a profit. It has been able to raise and spend huge amounts of money. Not being a financial expert myself, I can’t quite work out the total, but it is probably close to ten times the value it has been sold today. An article last year, entitled “Things are not well at Nanosphere” reported that the company had “burned through $412.5 million since inception”.

Capture

The difficulties of the company, visible for all for example in the evolution of the share prices since 2007 (above), have not led to any nuance in the enthusiastic celebration of Mirkin as a genius entrepreneur leading the way in the translation of nanotechnology into healthcare. Mirkin also benefitted directly through consultancy fees from 2005 to 2013 ($100k per year 2008-2013) and a 2010 news article reports that “while profits have been elusive, Nanosphere has paid off for Mr. Mirkin, who owned 840,000 shares as of this spring, or $2.5 million worth, although the stock has sagged lately…“.

Future will tell how much an important contribution to diagnostic the Spherical Nucleic probes of Nanosphere (now Luminex) will make.

At least, for the moment, it is a better outcome than another Mirkin-founded company, NanoInk.

Update: see reporting by John Pletz from Chicago Business

 

 

SmartFlare Maths

SmartFlare are nanoparticle sensors which are sold by Merck and are supposed to detect mRNA inside live cells. The technology has been developed by Chad Mirkin. In his papers, the nanoparticles are called Nano-Flares or Spherical Nucleic Acids. I am saying “supposed to” because the central question of how those sensors could possibly reach the target that they are supposed to detect has not been addressed by Mirkin nor by Merck.

After evaluating the SmartFlare, we published recently our conclusions at ScienceOpen. We ran this research as an open science project, sharing our experimental results, analyses and conclusions in quasi real time using an open science notebook. All of the imaging data can also be consulted via our online Open Microscopy Environment repository.

Gal Haimovich, who reviewed our paper, first on his blog and then at ScienceOpen, suggested we should do some SmartFlare Maths (point 4 of his list of comments). This had been at the back of my mind for some time. There are various ways to look at this problem, but all those I have tried lead to the same conclusion that the protocols, results and conclusion published do not add up. Here is what I believe the simplest way to think of the SmartFlare Maths problem. As usual, comments and corrections would be very much appreciated.

Estimation of the number of SmartFlares per cell

SF-figure adapted from Giljohann

Adapted from Giljohan et al, Figure 1b

Estimate 1. SmartFlares are added to cells at a final concentration of 0.1 nM (following Merck’s protocol). For 400,000 cells and 20 μL (following Merck’s protocol), this would result in 150,000 SmartFlares per cell, assuming that all nanoparticles are uptaken.

 

Estimate 2. Giljohann et al  (Mirkin’s group) published a quantitative study of uptake of SmartFlares in various cell lines in 2007. From their Figure 1b, we can see that in the lower concentration range tested, there is a linear correlation between SmartFlare concentration in the medium and number of particles per cell. For cells exposed to a medium concentration of 0.1 nM, this would result in an uptake of 75 000 SmartFlares per cell. In the following discussion, we will use this lower estimate. With ~50 oligo probes per SmartFlare, this would give 3,750,000 oligo probes per cell.

Oligo probes per cell versus mRNA per cell

The copy number of any specific mRNA per cell depends on sequence, cell types, signalling events etc, but typically it ranges from a few copies to a few thousands of copies. Our estimate above indicates an excess of oligo probes of at least three orders of magnitude over the most abundant mRNA.

If just 0.1% of these probes would bind their target, it would block 3,750 mRNA resulting in silencing. However, Merck and Mirkin both report that there is no silencing effect in the conditions of these experiments. It follows that more than 99.9% of the SmartFlares do not bind their target mRNA.

Fluorescence background

Seferos

Reproduced from Seferos et al, Figure 1.

Seferos et al (2007, Mirkin’s group) show that in the absence of release of the probe, fluorescence value of ~30% of the total value after release is observed (in ideal test-tube conditions, i.e. in the absence of nucleases). This is presumably due to a non-complete quenching of the fluorescence. For the SmartFlares to work, we would therefore have to detect a variation of less than 0.1% over a background of ~30%.

 

Lab Times: “Flare up over SmartFlares”

Stephen Buckingham interviewed me for Lab Times

On the face of it, Millipore’s SmartFlares are meant to be a tool cell biologists dream of – a way of measuring levels of specific RNA in real time in living cells. But does it really work? Raphaël Lévy and Gal Haimovich are in doubt.

Raphaël Lévy, Senior Lecturer in Biochemistry at the University of Liverpool, UK, was so unconvinced about SmartFlares that he decided to put the technique directly to the test (The Spherical Nucleic Acids mRNA Detection Paradox, Mason et al. ScienceOpen Research). As a result, Lévy has found himself at the centre of a row; not only over whether the technique actually does the job but as to whether it can actually work, at all – even in principle. Lab Times asked Lévy why he is in doubt that SmartFlares really work.

Lab Times:  What’s all the fuss about SmartFlares?

Read it all here (page 50-51).

I can’t resist also quoting this bit of pf the final paragraph…

In interview, Lévy is reasonable and measured in tone. But he is no stranger to controversy and can deliver fierce polemic with style.

If you have not yet, you should also check Leonid Schneider’s earlier and more complete investigation.