Science and ethics

Three little (nano) controversies and their morals

This post is a translation of an article originally published in French in Médecine/Sciences. The Editorial of the same issue (also in French) by Pierre Corvol is entitled Scientific integrity: the need for a systemic approach (open access).  You can download a pdf of my article, or, read at the publisher’s website (subscription). For citation, please refer to the original article as follows:

Trois petites (nano) controverses et leurs morales; Raphaël Lévy; Med Sci (Paris), 33 8-9 (2017) 797-800; Publié en ligne : 18 septembre 2017; DOI: https://doi.org/10.1051/medsci/20173308027

« Selon que vous serez puissant ou misérable, les jugements de cour vous rendront blanc ou noir » [1] [Depending on your social height, The law will see your crime as black—or else as white.] Thus concludes the Fable, by Jean de La Fontaine, The Animals sick of the plague : the donkey, guilty of the theft of a few blades of grass, is condemned to death, whilst the Lion and other powerful animals guilty of much more serious crimes are treated to praise and flattery. It is tempting and comforting to think that scientific judgments are of an altogether different nature. Seen in this light, science would reside outside of power struggles and the few mishaps (mistakes, frauds, conflicts of interest) would be rapidly corrected since the reality of the material world would quickly come back to us through experimental results if we were to try to ignore it for too long. The truth is however very different. A large fraction of published scientific results cannot be reproduced. It is not a few mishaps but structural problems which affect the foundations of the scientific enterprise [2, 3]. Peer evaluations seems to encourage the publication of extraordinary stories in high impact factor journals rather than careful and rigorous experimental studies. Contradictory or “negative” data are rarely published: scientific journals are not really interested, and us, scientists, are not particularly motivated by publicly stating our doubts on the work of colleagues who could be in charge of evaluating our next article or grant application. It is particularly urgent to repair our knowledge production system because science is at the center of numerous challenges critical for the future of human beings and the planet. The (real) problems of reproducibility have already been harnessed by lobbies to attack the credibility of scientists [4]. After the election for president of the largest scientific and military power of the world of a man who denies climate change, is very positive about the use of the atomic bomb, and, more broadly wages an open war against science and truth [5], we have a paramount need for science to be open, robust, capable of defending its independence, integrity and universal values. This seems a distant prospect.

The near absence of critical discussion in the scientific literature in many areas of science could make us forget that controversies are an essential aspect of the quest for knowledge, allowing to identify weak points of experiments and theories, thus enabling to consolidate or invalidate them [6]. They are consubstantial to the scientific practice [7]. The analysis of controversies is also a tool to “symmetrically map” the actors to better understand the roles of individuals and social processes [8]. In this piece, I describe three recent controversies in my area of research: gold nanoparticles applied to biology and medicine. This is no “symmetric map”: I am not a neutral observer but a scientist active, to various degrees, in each of those. I am trying nevertheless to draw some lessons and suggestions to improve the ways we work as scientists.

Stripy Nanoparticles

In 2004, Francesco Stellacci’s group at the Massachusetts Institute of Technology (MIT) published in the prestigious journal Nature Materials an article describing gold nanoparticles covered by a mixture of two molecules that self-assemble to form stripes that are observed by scanning probe microscopy [9]. This article and the numerous other ones that will follow in the same journal and in others just as prestigious such as the Journal of the American Chemical Society [10], Science [11] and Proceedings of the National Academy of Sciences (PNAS) [12], suggest that, thanks to their stripes, these nanoparticles have unique properties in terms of wetting, self-organization, interaction with proteins, penetration in cells, with lots of potential applications for biomolecular sensing, or even drug delivery. These articles certainly contributes to the progress of their authors’ careers, but the stripes are an experimental artefact well known by users of scanning probe microscopy. How to explain then that more than 20 “stripy” articles were published between 2004 and 2012? It is obvious that specialists (and even enlightened amateurs) had identified the problem as early as 2004. Yet, the articles and reviews of that period show no sign of it. One now knows that Predrag Djuranovic has been the first to engage into a scientific investigation aiming at testing, and eventually, contesting, the evidence for the the existence of the stripes. In 2005, this rigorous and brave scientist was a student in Francesco Stellacci’s lab. His experimental results and numerical simulation showing how the stripes originate from a poorly adjusted feedback control system were unambiguous but MIT ensured that these results would remain secret [13]. In 2007, I submitted a technical comment responding to the Science article. This first attempt, limited in its scope to the Science article itself, was unsuccessful: Science did ask Francesco Stellacci to respond but then decided not to publish the exchange of views [14]. In 2008, a new article from the MIT group, again in Nature Materials, report that, thanks to their stripes, these nanoparticles can cross the cell membrane and directly access the cytosol [15]. This is accompanied by a commentary entitled “Particles slip cell security” [16]. After discussions with several of my students, we decide to propose a more exhaustive answer. A few months later, the article “Stripy Nanoparticles Revisited” is ready. It includes a new analysis of the stripy images concluding that the stripes are a scanning artefact as well as a critical discussion of the physicochemical and biological properties which, together with experimental results, contradict the claim of direct access to the interior of cells. The article is first submitted to Nature Materials (rejected), then NanoLetters (rejected), and, finally, Small… where it is published after an editorial process that lasted three years [17-19]. The publication of our article, in November 2012, does not end the controversy. Instead, it expands in the scientific literature (a little) and it also takes new forms (in particular on my blog and others [20-23]). Problems with the reuse of images in different publications emerge and eventually lead to two corrections ([12] and [15]). After a number of requests, Philip Moriarty and Julian Stirling (School of Physics and Astronomy, university of Nottingham, UK) are given access to the original data of the 2004 article. They demonstrate, among other things, that the stripes are present in the entire image, i.e. even between the gold nanoparticles [24], a conclusion still rejected by Francesco Stellacci [25].

Homeopathic nanoparticles

The laboratory of Molly Stevens at Imperial College is one of the most prestigious in the field of biomaterials. In 2012, two articles from the group relate the particularly interesting properties of nanoparticles for diagnostic applications. The first one, published in Nature Materials, reports a phenomenon which is entirely extraordinary in which the signal detected increases when the concentration of molecules to detect decreases (“inverse sensitivity”) [26]. Even more incredible, this phenomenon extends to the point where there is less than a molecule of enzyme, on average, in the volume under study. The second article published in Nature Nanotechnology goes further : no need for instruments, the detection of concentration of analytes in the same range is achieved thanks to a colour change visible with the naked eye [27]. Detailed critiques of these articles are available on the website PubPeer [28, 29] as well as in a preprint authored by Boris Barbour; the objections are both simple and profound but the authors have chosen not to respond. One can note that the Avogadro number includes lots of zeros (630 000 000 000 000 000 000 000) and that the detection of a macroscopic change of property due to the presence of a single molecule is therefore an achievement that requires extremely solid proofs. One of the posts on PubPeer indicates that someone contacted the Editor of Nature Nanotechnology in January 2013, but, four years later, no doubts are expressed on the journal website, in the traditional scientific literature nor in the newspapers that had covered this story (e.g. Le Monde and the Daily Mail) when it was initially published [30, 31].

Spherical Nucleic Acids

The laboratory of Chad Mirkin at Northwestern University (USA) is one of the most prestigious in the field of nanosciences applied to biology and medicine. One major theme of their research are the Spherical Nucleic Acids (SNAs), a term introduced by Mirkin to describe gold nanoparticles functionalised with DNA (or RNA) strands. These SNAs are supposed to have properties very different from linear DNA [32]. In particular, they can access the cytosol of live cells, where they could detect and regulate, the presence and quantity of mRNAs. One could ask why this solution did not appear during evolution : to access the cell machinery, viruses and bacteria would have only needed to package themselves within their genetic materials. The first articles (in Science [33], the Journal of the Americal Chemical Society [34], NanoLetters [35], ACS Nano [36]) proposing this surprising theory do no mention the mechanism of the SNAs into cells whatsover. The following one, e.g. [37], propose that the particles enter by endocytosis, but do not explain the mechanism by which the SNAs would escape endosomes. After several dozens of articles on this topic, the proportion of particles reaching the cytosol is still to be measured and reported (in spite of the fact that gold nanoparticles have been used since the 1950s to study intracellular trafficking; such a study would not be difficult). One article from the Mirkin group suggests that SNAs are degraded in the endosomes and that a “small unquantifiable portion escapes […]” [38]. Nevertheless, the particles are now commercially available under the name SmartFlares (Merck Millipore) to detect RNA inside cells. We have studied the entry of nanoparticles in cells and their ability to detect RNA. Given our difficult experience with the publication of Stripy Nanoparticle Revisited, we decided to adopt a different strategy. The project has been open and we have shared our results in quasi real time on our blog. In contradiction with the descriptions made by Mirkin and by Merck Millipore, we have observed that the SmartFlares were degraded in endosomes and were not able to detect mRNA.  Mirroring the tale of Predrag Djuranovic and the stripy nanoparticles, we were not the first to have doubts about the technology: Luke Armstrong, who had been in charge of developing the SmartFlares at Merck Millipore in California (before leaving the company) had reached the same conclusion [39]. To ensure speedy publication and transparency, we published our article on the (not so prestigious) ScienceOpen platform where peer review occurs after publication [40]. We invited comments by Mirkin to no avail. Another article by the same group in PNAS describe a new version of the SmartFlares [41]. Our analysis of the raw data (obtained after multiple insistent requests) show that the signal comes from endosomes. Our letter submitted to PNAS has been rejected by the editorial board because it “[did] not contribute significantly to the discussion of this paper” [42].

 Morals

Access to raw data is essential and guaranteed by clear rules adopted by Universities, scientific journals and funding agencies. It is therefore generally possible to access data with some efforts. It is obviously preferable to publish data at the same time as the articles. This is already the norm for some categories of results and it should become generalised. Researchers should also adopt the Manifesto for reproducible research [43]. The tools are in place to improve the practice of science.

Evaluations of science and scientists must imperatively be based on a critical analysis of their work and the robustness or their results, not on the prestige of the institutions or journals. This requires a change of mind and a clear commitment from researchers who are in positions of power, i.e. everyone who features on promotion or recruitment committees. To say that an article is good because it has been published in a prestigious journal is a moral and logical error which needs to be challenged.

Institutions and scientific journals are not motivated by the quest for scientific truth. The decisisons taken by MIT (keeping Predrag Djuranovic’s findings secret), by Nature Materials (not publishing the exchange with Francesco Stellacci [14]), and by PNAS (not publishing [42]) have directly impacted progress of knowledge. These institutions have commendable principles but, in practice, they aim first at defending their reputation and finances [44]. The latter objective only partially aligns with scientific progress which requires rapid and open discussion of results and conclusions. The Worldwide Web, invented for the sharing of science, enables this discussion. Researchers therefore should embrace the following tools: 1) Pubpeer to comment on articles; 2) Preprints to publish rapidly, minimise the influence of editors, and, dissociate publication, i.e. sharing of information, from evaluation, i.e. peer review; 3) Social networks, e.g. Twitter and blogs, which constitute an ongoing scientific conference to discuss experiments, results, methods, analyses, and new publications.

Acknowledgements: I thank Marianne Noel (IFRIS) for her critical reading of this piece, and, Marianne Lévy for comments on the grammar and style [French version] very necessary after 14 years in an English-speaking country…

Conflicts of interest: The author declares that he has no conflict of interest related to this article.

References:

  1. La Fontaine J (de). Les animaux malades de la peste. Fables, 1678. [full text]
  2. Ioannidis JPA, Boyack K, Klavans R, et al. How to make more published research true. PLoS Med 2014 ; 11 : e1001747.
  3. Baker M, Dolgin E. Cancer reproducibility project releases first results. Nature 2017; 541 : 269-270.
  4. Laframboise D. How many scientific papers just aren’t true? The Spectator 2016.
  5. Krauss LM. Donald Trump’s war on science. New Yorker 2016.
  6. Dascal M. The study of controversies and the theory and history of science. Sci Context 1998 ; 11 : 147.
  7. Latour B. Pasteur et Pouchet : hétérogenèse de l’histoire des sciences (sous la direction de Michel Serres). Éléments d’histoire des sciences 1989 : 423-45.
  8. Pestre D. L’analyse de controverses dans l’étude des sciences depuis trente ans. Mil neuf cent. Rev d’histoire Intellect 2007 ; 25 : 29-43.
  9. Jackson AM, Myerson JW, Stellacci F. Spontaneous assembly of subnanometre-ordered domains in the ligand shell of monolayer-protected nanoparticles. Nat Mater 2004 ; 3 : 330-6.
  10. Jackson AM, Ying Hu Y, Silva PJ, Stellacci F. From homoligand- to mixed-ligand- monolayer-protected metal nanoparticles: a scanning tunneling microscopy investigation. J Am Chem Soc 2006 ; 128 : 11135-47.
  11. DeVries GA, Brunnbauer M, Hu Y, et al. Divalent metal nanoparticles. Science 2007 ; 315.
  12. Centrone A, Penzo E, Sharma M, et al. The role of nanostructure in the wetting behavior of mixed monolayer-protected metal nanoparticles. Proc Natl Acad Sci USA 2008 ; 105 : 9886-91.
  13. Djuranovic P. Seven years of imaging artifacts: what gives? Rapha-Z-Lab 2012. https://raphazlab.wordpress.com/2012/12/11/seven-years-of-imaging-artifacts/
  14. Levy R. Divalent metal nanoparticles. PubPeer. https://pubpeer.com/publications/4DA88768C5B279E24E469CC0080A47
  15. Verma A, Uzun O, Hu Y, et al. Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles. Nat Mater 2008 ; 7 : 588-95.
  16. Xia T, Rome L, Nel A. Nanobiology: particles slip cell security. Nat Mater 2008 ; 7 : 519-20.
  17. Cesbron Y, Shaw CP, Birchall JP, et al. Stripy nanoparticles revisited. Small 2012 ; 8 : 3714-9.
  18. Yu M, Stellacci F. Response to “Stripy nanoparticles revisited”. Small 2012 ; 8 : 3720-6.
  19. Levy R. Stripy timeline. 2012. Rapha-z-lab https://raphazlab.wordpress.com/2012/12/20/stripytimeline/
  20. Dove A. Do these stripes make my nanoparticles look weird? 2012. http://alandove.com/static/2012/12/do-these-stripes-make-my-nanoparticles-look-weird/
  21. Fernig DG. Ferniglab Blog. https://ferniglab.wordpress.com/?s=stripy
  22. Neuroskeptic. Science is interpretation. Discov Mag Blogs 2014. http://blogs.discovermagazine.com/neuroskeptic/2014/01/04/reanalysis-science/
  23. Natelson D. A nano-controversy. Nanoscale views 2012. http://nanoscale.blogspot.co.uk/2012/12/a-nano-controversy.html
  24. Stirling J, Lekkas I, Sweetman A, et al. Critical assessment of the evidence for striped
    nanoparticles. PLoS One 2014 ; 9 : e108482.
  25. Ong QK, Stellacci F, Jeschke G, et al. Response to “Critical Assessment of the Evidence for Striped Nanoparticles.” PLoS One 2015 ; 10 : e0135594.
  26. Rodríguez-Lorenzo L, la Rica R de, Álvarez-Puebla RA, et al. Plasmonic nanosensors with inverse sensitivity by means of enzyme-guided crystal growth. Nat Mater 2012 ; 11 : 604-7.
  27. la Rica R de, Stevens MM. Plasmonic ELISA for the ultrasensitive detection of disease biomarkers with the naked eye. Nat Nanotechnol 2012 ; 7 : 821-4.
  28. PubPeer “Plasmonic nanosensors with inverse sensitivity by means of enzyme-guided crystal growth”. https://pubpeer.com/publications/3E8208F0654769A44C22D4E78DA2B8
  29. PubPeer “Plasmonic ELISA for the ultrasensitive detection of disease
    biomarkers with the naked eye”. https://pubpeer.com/publications/54AECF24E96162E3A563AED08BE0B3
  30. Des nanoparticules d’or pour dépister VIH ou cancer à l’œil nu. Le Monde
    2012.
  31. Bates C. Colour-coded blood test that turns blue if you have HIV is 10 times
    more sensitive than current methods. The Daily Mail 2012.
  32. Cutler JI, Auyeung E, Mirkin CA. Spherical nucleic acids. J Am Chem Soc 2012 ;
    134 : 1376-91.
  33. Rosi NL, Giljohann DA, Thaxton CS, et al. Oligonucleotide-modified gold
    nanoparticles for intracellular gene regulation. Science 2006 ; 312 :
    1027-30.
  34. Seferos DS, Giljohann DA, Hill HD, et al. Nano-flares: probes for transfection
    and mRNA detection in living cells. J Am Chem Soc 2007 ; 129 : 15477-9.
  35. Zheng D, Seferos DS, Giljohann DA, et al. Aptamer nano-flares for molecular
    detection in living cells. Nano Lett 2009 ; 9 : 3258-61.
  36. Prigodich AE, Seferos DS, Massich MD, et al. Nano-flares for mRNA
    Regulation and Detection. ACS Nano 2009 ; 3 : 2147-52.
  37. Choi CHJ, Hao L, Narayan SP, et al. Mechanism for the endocytosis of
    spherical nucleic acid nanoparticle conjugates. Proc Natl Acad Sci USA
    2013 ; 110 : 7625-30.
  38. Wu XA, Choi CHJ, Zhang C, et al. Intracellular fate of spherical nucleic acid
    nanoparticle conjugates. J Am Chem Soc 2014 ; 136 : 7726-33.
  39. Schneider L. Do nanoparticles deliver? Merck’s Smart Flares and other
    controversies, 2015. https://forbetterscience.com/2015/11/20/do-nanoparticles-deliver-mercks-smart-flares-and-other-controversies/
  40. Mason D, Carolan G, Held M, et al. The spherical nucleic acids mRNA
    detection paradox. ScienceOpen Res 2016 ; DOI: 10.14293/S2199-
    1006.1.SOR-CHEM.AZ1MJU.v1.
  41. Briley WE, Bondy MH, Randeria PS, et al. Quantification and real-time
    tracking of RNA in live cells using Sticky-flares. Proc Natl Acad Sci USA
    2015 ; 112 : 9591-5.
  42. Mason D, Levy R. Sticky-flares: real-time tracking of mRNAs…
    or of endosomes? bioRxiv 2015. http://biorxiv.org/content/early/2015/10/19/029447
  43. Munafò MR, Nosek BA, Bishop DVM, et al. A manifesto for reproducible
    science. Nat Hum Behav 2017 ; 1 : 21.
  44. Glanz J, Armendariz A. Years of ethics charges, but star cancer researcher
    gets a pass. New York Times 2017
Advertisements

Guest post: SmartFlares fail to reflect their target transcripts levels

Czarnek&BeretaThis is a guest post by Maria Czarnek and Joanna Bereta, who have just published the following article in Scientific Reports entitled SmartFlares fail to reflect their target transcripts levels

We got the idea of using SmartFlare probes when working on generating knockout cells. In the era of CRISPR-Cas9 genome editing, the possibility of sorting out knockout cells based on their low target transcript content (mRNAs that contain premature stop codons are removed in a process called nonsense-mediated decay) instead of time-consuming testing of dozens or thousands of clones would be a great step forward. SmartFlare probes seemed to be just the ticket: no transfection, lysis or fixation needed; moreover, the probes were supposed to eventually leave the cells. We were full of hope as the first probes arrived. (more…)

Time to reclaim the values of science

This post is dedicated to Paul Picard, my grand dad, who was the oldest reader of my blog. He was 17 (and Jewish) in 1939 so he did not get the chance to go to University. He passed away on the first of October 2016. More on his life here (in French) and some of his paintings (and several that he inspired to his grandchildren and great-grandchildren). The header of my blog is from a painting he did for me

A few recent events of vastly different importance eventually triggered this post.

A  (non-scientist) friend asked my expert opinion about a campaign by a French environmental NGO seeking to  raise money to challenge the use of nanoparticles such as E171 in foods. E171 receives episodic alarmist coverage, some of which were debunked by Andrew Maynard in 2014. The present campaign key dramatic science quote “avec le dioxyde de titane, on se retrouve dans la même situation qu’avec l’amiante il y a 40 ans {with titanium dioxide, we are in the same situation than we were with asbestos 40 years ago}” is from Professor Jürg Tschopp. It comes from an old media interview (2011, RTS) that followed a publication in PNAS. We cannot ask Professor Tschopp what he thinks of the use of this 5 years old quote: unfortunately he died shortly after the PNAS publication. The interpretation of this article has been questioned since: it seems likely that the observed toxicity was due to endotoxin contamination rather than the nanomaterials themselves. There is on the topic of nanoparticles a high level of misinformation and fear that finds its origins (in part) in how the scientific enterprise is run today. Incentives are to publish dramatic results in high impact factor journals which lead many scientists to vastly exaggerate both the risks and the potential of their nanomaterials of choice. The result is that we build myths instead of solid reproducible foundations, we spread disproportionate fears and hopes instead of sharing questions and knowledge. When it comes to E171 additives in foods, the consequences of basing decisions on flawed evidence are limited. After all, even if the campaign is successful, it will only result in M&M’s not being quite as shiny.

I have been worried for some time that the crisis of the scientific enterprise illustrated by this anecdote may affect the confidence of the public in science. In a way, it should; the problems are real, lead to a waste of public money, and, they slow down progress. In another way, technological (including healthcare) progress based on scientific findings has been phenomenal and there are so many critical issues where expertise and evidence are needed to face pressing humanities’ problems that such a loss of confidence would have grave detrimental effects. Last week, in the Spectator, Donna Laframboise published an article entitled “How many scientific papers just aren’t true? Enough that basing government policy on ‘peer-reviewed studies’ isn’t all it’s cracked up to be“. The article starts by a rather typical and justified critique of peer review, citing (peer-reviewed) evidence, and then, moves swiftly to climate change seeking to undermine the enormous solid body of work on man-made climate change. It just happens that Donna Laframboise is working for “a think-tank that has become the UK’s most prominent source of climate-change denial“.

One of the Brexit leaders famously declared that “people in this country have had enough of experts”. A conservative MP declared on Twitter that he”Personally, never thought of academics as ‘experts’. No experience of the real world. Yesterday, Donald Trump, a climate change denier was elected president of the USA: “The stakes for the United States, and the world, are enormous” (Michael Greshko writing for the National Geographic). These are attacks not just on experts, but on knowledge itself, and, the attacks extends to other values dear to science and encapsulated in the “Principle of the Universality of Science“:

Implementation of the Principle of the Universality of Science is fundamental to scientific progress. This Principle embodies freedom of movement, association, expression and communication for scientists, as well as equitable access to data, information and research materials. These freedoms are highly valued by the scientific community and generally well accepted by governments and policy makers. Hence, scientists are normally able to travel to international meetings, associate with colleagues and freely express their opinions regardless of factors such as ethnic origin, religion, citizenship, language, political stance, gender, sex or age. However, this is not always the case and so it is important to have mechanisms in place at the local, national and international levels to monitor compliance with this principle and intervene when breaches occur. The International Council for Science (ICSU) and its global network of Members provide one such mechanism to which individual scientists can turn for assistance. The Principle of the Universality of Science focuses on scientific rights and freedoms but implicit in these are a number of responsibilities. Individual scientists have a responsibility to conduct their work with honesty, integrity, openness and respect, and a collective responsibility to maximize the benefit and minimize the misuse of science for society as a whole. Balancing freedoms and responsibilities is not always a straightforward process. For example, openness and sharing of data and materials may be in conflict with a scientist’s desire to maintain a competitive edge or an employer’s requirements for protecting intellectual property. In some situations, for example during wars, or in specific areas of research, such as development of global surveillance technologies, the appropriate balance between freedoms and responsibilities can be extremely difficult to define and maintain. The benefits of science for human well-being and development are widely accepted. The increased average human lifespan in most parts of the world over the past century can be attributed, more or less directly, to scientific progress. At the same time, it has to be acknowledged that technologies arising from science can inadvertently have adverse effects on people and the environment. Moreover, the deliberate misuse of science can potentially have catastrophic effects. There is an increasing recognition by the scientific community that it needs to more fully engage societal stakeholders in explaining, developing and implementing research agendas. A central aspect of ensuring the freedoms of scientists and the longer term future of science is not only conducting science responsibly but being able to publicly demonstrate that science is being conducted responsibly. Individual scientists, their associated institutions, employers, funders and representative bodies, such as ICSU, have a shared role in both protecting the freedoms and propagating the responsibilities of scientists. This is a role that needs to be explicitly acknowledged and embraced. It is likely to be an increasingly demanding role in the future.

It is urgent that we, scientists, reclaim these values of humanity, integrity and openness and make them central (and visibly so) in our Universities. To ensure this transformation occurs, we must act individually and as groups so that scientists are evaluated on their application of these principles. The absurd publication system where we (the taxpayer) pay millions of £$€ to commercial publishers to share hide results that we (scientists) have acquired, evaluated and edited must end. There are some very encouraging and inspiring open science moves coming from the EU which aim explicitely at making “research more open, global, collaborative, creative and closer to society“. We must embrace and amplify these moves in our Universities. And, as many, e.g. @sazzels19 and @Stephen_curry have said, now more than ever, we need to do public engagement work, not with an advertising aim, but with a truly humanist agenda of encouraging curiosity, critical thinking, debates around technological progress and the wonders of the world.

 

The Internet of NanoThings

Nanosensors and the Internet of Nanothings” ranks 1st in a list of ten “technological innovations of 2016” established by no less than the World Economic Forum Meta-Council on Emerging Technologies [sic].

The World Economic Forum, best known for its meetings in Davos, is establishing this list because:

New technology is arriving faster than ever and holds the promise of solving many of the world’s most pressing challenges, such as food and water security, energy sustainability and personalized medicine. In the past year alone, 3D printing has been used for medical purposes; lighter, cheaper and flexible electronics made from organic materials have found practical applications; and drugs that use nanotechnology and can be delivered at the molecular level have been developed in medical labs.

However, uninformed public opinion, outdated government and intergovernmental regulations, and inadequate existing funding models for research and development are the greatest challenges in effectively moving new technologies from the research lab to people’s lives. At the same time, it has been observed that most of the global challenges of the 21st century are a direct consequence of the most important technological innovations of the 20st century.

Understanding the implications of new technologies are crucial both for the timely use of new and powerful tools and for their safe integration in our everyday lives. The objective of the Meta-council on Emerging Technologies is to create a structure that will be key in advising decision-makers, regulators, business leaders and the public globally on what to look forward to (and out for) when it comes to breakthrough developments in robotics, artificial intelligence, smart devices, neuroscience, nanotechnology and biotechnology.

Given the global reach and influence of the WEF, it is indeed perfectly believable that decision-makers, regulators, business leaders and the public could be influenced by this list.

Believable and therefore rather worrying for – at least the first item – is, to stay polite, complete utter nonsense backed by zero evidence. The argument is so weak, disjointed and illogical that it is hard to challenge. Here are some of the claims made to support the idea that “Nanosensors and the Internet of Nanothings” is a transformative  technological innovations of 2016.

Scientists have started shrinking sensors from millimeters or microns in size to the nanometer scale, small enough to circulate within living bodies and to mix directly into construction materials. This is a crucial first step toward an Internet of Nano Things (IoNT) that could take medicine, energy efficiency, and many other sectors to a whole new dimension.

Except that there is no nanoscale sensor that can circulate through the body and communicate with internet (anyone knows why sensors would have to be nanoscale to be mixed into construction materials?).

The next paragraph seize on synthetic biology:

Some of the most advanced nanosensors to date have been crafted by using the tools of synthetic biology to modify single-celled organisms, such as bacteria. The goal here is to fashion simple biocomputers [Scientific American paywall] that use DNA and proteins to recognize specific chemical targets, store a few bits of information, and then report their status by changing color or emitting some other easily detectable signal. Synlogic, a start-up in Cambridge, Mass., is working to commercialize computationally enabled strains of probiotic bacteria to treat rare metabolic disorders.

What is the link between engineered bacteria and the internet? None. Zero. I am sorry to inform the experts of the WEF that bacteria, even genetically engineered ones, do not have iPhones: they won’t tweet how they do from inside your gut.

I could go on but will stop. Why is such nonsense presented as expert opinion?

Lab Times: “Flare up over SmartFlares”

Stephen Buckingham interviewed me for Lab Times

On the face of it, Millipore’s SmartFlares are meant to be a tool cell biologists dream of – a way of measuring levels of specific RNA in real time in living cells. But does it really work? Raphaël Lévy and Gal Haimovich are in doubt.

Raphaël Lévy, Senior Lecturer in Biochemistry at the University of Liverpool, UK, was so unconvinced about SmartFlares that he decided to put the technique directly to the test (The Spherical Nucleic Acids mRNA Detection Paradox, Mason et al. ScienceOpen Research). As a result, Lévy has found himself at the centre of a row; not only over whether the technique actually does the job but as to whether it can actually work, at all – even in principle. Lab Times asked Lévy why he is in doubt that SmartFlares really work.

Lab Times:  What’s all the fuss about SmartFlares?

Read it all here (page 50-51).

I can’t resist also quoting this bit of pf the final paragraph…

In interview, Lévy is reasonable and measured in tone. But he is no stranger to controversy and can deliver fierce polemic with style.

If you have not yet, you should also check Leonid Schneider’s earlier and more complete investigation.

The F**** word

I am talking of course of the word fraud.

It is generally understood that the f**** word is best avoided in polite company, especially when talking about the work of colleagues published in peer reviewed journals. If you really must (in which case, you’d better be critical but fair), you should instead simply point to the facts but avoid making explicitly the implication that fraud has happened (the copy and paste similarities between bands, etc; you name it).

Hopefully, from that point, journal editors and scientific institutions whose main mission is service to science and its integrity will take over and will sort out the mess.

Except that it does not happen. Here is an ordinary example:

The same authors have at least two other articles with similar problems, i.e. multiple particles from the same electron microscopy picture that look strangely similar.  Right. I am not going to beat around the bush. This is fraud. There cannot be any innocent way by which such an image can be produced. It is therefore fraud (and poor quality photoshop).

François-Xavier Coudert reported his concerns to the Editors of the respective journals. After this latest series of tweets, one editor finally responded that “authors could not provide original (primary high-res) data due to a “flood” of their lab”. End of story, says editor. Microchimica Acta will not act because they “cannot prove image was manipulated”.

The best Twitter responses so far are by Chris Waldron and Sylvain Deville

//platform.twitter.com/widgets.js

and…

//platform.twitter.com/widgets.js

Seriously though, if in a case like this, institutions and journals cannot act in a timely manner to fix the scientific record, there is no hope for cases which actually require thinking and investigations.

Here is the PubPeer thread with links to the other articles.

Update (20/12/2015): Editor of Microchimica Acta, Otto Wolfbeis, has been in touch. It is not the end of the story after all. From his email, we learn that the University of Manchester has been alerted and that a draft of a Retraction Note has been sent to the authors for comment.

Update (11/02/2016): Still no expression of concerns nor retractions… and Elsevier and Springer are still selling these fabricated articles:

Capture

Capture

Update (01/03/2016): RETRACTION of the Microchimica paper (Springer) “Following a balanced discussion of the allegations and after having consulted experts, the Editors of Microchimica Acta have come to the conclusion that there is striking evidence for manipulation.

 

 

Disclaimer: This is a personal weblog. The opinions expressed here represent my own and not those of my employer.

What’s wrong with that CNRS press release?

Imagine an important public institution, say, for the sake of example, the police.

Imagine that serious and specific accusations of misconduct have been made against a high ranking officer on a whistle-blower website. These have been picked up in the media. Although there is no suggestion that anybody has been physically harmed, those acts, if proved true, may have costed significant amount of public money and may have had severe consequences on the well being of many people and businesses. The media reports are also a concern because of the damage made to the public trust, essential to the police mission.

Imagine then, that the press release announcing the investigation says nothing of the potential consequences of those putative acts, stresses that the serious and specific accusations are in fact only anonymous comments on a website, indicates that the investigation procedure will be completely opaque to public scrutiny with an undefined timeline, and, finally, concludes with an entire paragraph devoted to the glorification of the work of the accused (and indeed highly qualified and otherwise commendable) officer.

This is, of course, science-fiction. The police would not adopt such a course of action because they know full well that this would only disqualify the investigation and do nothing for the prestige of the (maybe wrongly) accused officer.

This is however very close to what two major scientific institutions have just done.

Last week, the CNRS and ETH Zurich published press releases announcing investigations into allegations of scientific misconduct. Retraction Watch, covering these press releases, “found some of the language in the announcements puzzling. Call us old-fashioned, but generally it’s a good idea to actually do an investigation before saying that “the studies’ findings are not in doubt.”

True, especially in the current context. The scientific enterprise is suffering from a reproducibility crisis. One of the drivers of this crisis is the lack of publication of negative results which is itself a combined consequence of the publication system and of the methods of evaluation of researchers based on where they publish rather than what they publish [I got more (serious) congratulations for my April fool spoof paper in Nature Materials than for my PloS One paper published the day after].

Scientific institutions such as the CNRS and ETH Zurich should be leading the way to change those practices. They should not, at the onset of an investigation, rule out that “studies findings” (maybe) based on data manipulation are *not* in doubt. Instead, they should set firm plans to test how much of this body of work is solid and how much is not. Surely damages to human knowledge and the integrity of the scientific record should be major sources of concern, yet they barely feature in the press release. It would seem that the main (and almost exclusive) concern related to accusations of scientific misconduct is the damage done to the accused until proven guilty/innocent. That concern for individuals is warranted. It should not stop to the accused. If the charges are proved correct, then there are probably a number of other individuals, less prominent and well-known, who have directly suffered to different extent and for whom redress is unlikely to ever happen: the reviewers of papers and grants who have wasted their time on “diagram/chart” which had been “manipulated”; the competitors which may not have had access to such impressive data and therefore would have failed with their papers and grant applications; the PhD students who might have spent three years trying to reproduce some of these experiments without success [you would not have heard about this since negative results are not published] and may have left science in disgust at the end of the process, etc.

If you’re interested, see also this conversation about the CNRS press release via Twitter (with critical contributions from @b_abk6 and others).

and the Lab Times editorial with the important open letter by Vicki Vance

and of course, PubPeer