post-publication peer review

20 critical reviews of influential articles about nanoparticles and cells

I have commented on the 20 highly cited articles below. They all relate to nanoparticles and cells. They were published between 1998 and 2006 and have received more than 1,000 citations each, over 40,000 citations overall.

I have used Twitter to document my reviewing process.

I have copied all of my reviews to PubPeer ; see the link below each papers in the bibliography at the bottom of this post. The orange colour indicates serious problems; the blue colour indicates that important old relevant papers have been overlooked.

You can also find the tweets via the ThreadReaderApp:

 

1             Bruchez, M., Moronne, M., Gin, P., Weiss, S. & Alivisatos, A. P. Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013-2016, doi:10.1126/science.281.5385.2013 (1998).

=> Comment on PubPeer.

2             Gref, R. et al. ‘Stealth’ corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids and Surfaces B-Biointerfaces 18, 301-313, doi:10.1016/s0927-7765(99)00156-3 (2000).

=> Comment on PubPeer.

3             Lewin, M. et al. Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nature Biotechnology 18, 410-414, doi:10.1038/74464 (2000).

=> Comment on PubPeer.

4             Akerman, M. E., Chan, W. C. W., Laakkonen, P., Bhatia, S. N. & Ruoslahti, E. Nanocrystal targeting in vivo. Proceedings of the National Academy of Sciences of the United States of America 99, 12617-12621, doi:10.1073/pnas.152463399 (2002).

=> Comment on PubPeer.

5             Hirsch, L. R. et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proceedings of the National Academy of Sciences of the United States of America 100, 13549-13554, doi:10.1073/pnas.2232479100 (2003).

=> Comment on PubPeer.

6             Lai, C. Y. et al. A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. Journal of the American Chemical Society 125, 4451-4459, doi:10.1021/ja028650l (2003).

=> Comment on PubPeer.

7             Wu, X. Y. et al. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nature Biotechnology 21, 41-46, doi:10.1038/nbt764 (2003).

=> Comment on PubPeer.

8             Gao, X. H., Cui, Y. Y., Levenson, R. M., Chung, L. W. K. & Nie, S. M. In vivo cancer targeting and imaging with semiconductor quantum dots. Nature Biotechnology 22, 969-976, doi:10.1038/nbt994 (2004).

=> Comment on PubPeer.

9             Sondi, I. & Salopek-Sondi, B. Silver nanoparticles as antimicrobial agent: a case study on E-coli as a model for Gram-negative bacteria. Journal of Colloid and Interface Science 275, 177-182, doi:10.1016/j.jcis.2004.02.012 (2004).

=> Comment on PubPeer.

10           Connor, E. E., Mwamuka, J., Gole, A., Murphy, C. J. & Wyatt, M. D. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 1, 325-327, doi:10.1002/smll.200400093 (2005).

=> Comment on PubPeer.

11           El-Sayed, I. H., Huang, X. H. & El-Sayed, M. A. Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: Applications in oral cancer. Nano Letters 5, 829-834, doi:10.1021/nl050074e (2005).

=> Comment on PubPeer.

12           Hussain, S. M., Hess, K. L., Gearhart, J. M., Geiss, K. T. & Schlager, J. J. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicology in Vitro 19, 975-983, doi:10.1016/j.tiv.2005.06.034 (2005).

=> Comment on Pubpeer.

13           Kirchner, C. et al. Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Letters 5, 331-338, doi:10.1021/nl047996m (2005).

=> Comment on PubPeer.

14           Loo, C., Lowery, A., Halas, N. J., West, J. & Drezek, R. Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Letters 5, 709-711, doi:10.1021/nl050127s (2005).

=> Comment on PubPeer.

15           Morones, J. R. et al. The bactericidal effect of silver nanoparticles. Nanotechnology 16, 2346-2353, doi:10.1088/0957-4484/16/10/059 (2005).

=> Comment on PubPeer.

16           Chithrani, B. D., Ghazani, A. A. & Chan, W. C. W. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Letters 6, 662-668, doi:10.1021/nl052396o (2006).

=> Comment on PubPeer.

17           Huang, X. H., El-Sayed, I. H., Qian, W. & El-Sayed, M. A. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. Journal of the American Chemical Society 128, 2115-2120, doi:10.1021/ja057254a (2006).

=> Comment on PubPeer.

18           Panacek, A. et al. Silver colloid nanoparticles: Synthesis, characterization, and their antibacterial activity. Journal of Physical Chemistry B 110, 16248-16253, doi:10.1021/jp063826h (2006).

=> Comment on PubPeer.

19           Rosi, N. L. et al. Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science 312, 1027-1030, doi:10.1126/science.1125559 (2006).

=> Comment on PubPeer.

20           Xia, T. et al. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Letters 6, 1794-1807, doi:10.1021/nl061025k (2006).

=> Comment on PubPeer.

 

 

Open peer review of (not so) controversial articles

Publishing articles that are critical of previously published work is notoriously difficult but the secrecy of peer review makes it hard to explain the kind of biases and tricks that one faces in this enterprise. Opening peer review, i.e. sharing reports and responses, would certainly help. Here is an interesting exemple related to an article (nicely discussed by Philip Moriarty in a previous post) which is not even critical of prior literature but touches on the stripy nanoparticles controversy. That was too much for Reviewer #1 (hyperlinks added by me; they point to relevant blog posts here or at PubPeer):

Reviewer #1 (Remarks to the Author):
This paper describes the scanning tunnelling microscopy imaging (STM) of a silver cluster (Ag374). To the best of my knowledge there is no report of such things to date. As such I think this paper should be published but in a specialised journal or a broad journal with reporting functions as Scientific Reports.

The significance of this paper as such is minimal. The STM does not add anything to what X-ray crystallography has shown so far also on the same cluster. In fact it requires strong support from calculation.

The STM itself has been widely published on nanoparticles by the group of Stellacci. The authors do reference a controversy there but do not comment on it an neither add to it.

The approach used is almost identical to the one described by such group in Ong et al ACS Nano (non cited), and the results achieved are similar to the ones described in the same paper and in Moglianetti et al. (not cited). Their minimal difference is that they achieved these results in liquid nitrogen and helium temperature, but low temperature results were described in Biscarini et al. (not cited).

Given the scant discussion in the paper (lacks any point) and the two major objections report, I suggest rejection.

The other, more supportive reports, and the response from the authors, can be downloaded from Nature Communications.

Probes, Patterns, and (nano)Particles

philipmoriarty

Philip Moriarty

This is a guest post by Philip Moriarty, Professor of Physics at the University of Nottingham (and blogger).

“We shape our tools, and thereafter our tools shape us.”

Marshall McLuhan (1911-1980)

My previous posts for Raphael’s blog have focussed on critiquing poor methodology and over-enthusiastic data interpretation when it comes to imaging the surface structure of functionalised nanoparticles. This time round, however, I’m in the much happier position of being able to highlight an example of good practice in resolving (sub-)molecular structure where the authors have carefully and systematically used scanning probe microscopy (SPM), alongside image recognition techniques, to determine the molecular termination of Ag nanoparticles.

For those unfamiliar with SPM, the concept underpinning the operation of the technique is relatively straight-forward. (The experimental implementation rather less so…) Unlike a conventional microscope, there are no lenses, no mirrors, indeed, no optics of any sort [1]. Instead, an atomically or molecularly sharp probe is scanned back and forth across a sample surface (which is preferably atomically flat), interacting with the atoms and molecules below. The probe-sample interaction can arise from the formation of a chemical bond between the atom terminating the probe and its counterpart on the sample surface, or an electrostatic or magnetic force, or dispersion (van der Waals) forces, or, as in scanning tunnelling microscopy (STM), the quantum mechanical tunnelling of electrons. Or, as is generally the case, a combination of a variety of those interactions. (And that’s certainly not an exhaustive list.)

Here’s an example of an STM in action, filmed in our lab at Nottingham for Brady Haran’s Sixty Symbols channel a few years back…

Scanning probe microscopy is my first love in research. The technique’s ability to image and manipulate matter at the single atom/molecule level (and now with individual chemical bond precision) is seen by many as representing the ‘genesis’ of nanoscience and nanotechnology back in the early eighties. But with all of that power to probe the nanoscopic, molecular, and quantum regimes come tremendous pitfalls. It is very easy to acquire artefact-ridden images that look convincing to a scientist with little or no SPM experience but that instead arise from a number of common failings in setting up the instrument, from noise sources, or from a hasty or poorly informed choice of imaging parameters. What’s worse is that even relatively seasoned SPM practitioners (including yours truly) can often be fooled. With SPM, it can look like a duck, waddle like a duck, and quack like a duck. But it can too often be a goose…

That’s why I was delighted when Raphael forwarded me a link to “Real-space imaging with pattern recognition of a ligand-protected Ag374 nanocluster at sub-molecular resolution”, a paper published a few months ago by Qin Zhou and colleagues at Xiamen University (China), the Chinese Academy of Science, Dalian (China), the University of Jyväskylä (Finland), and the Southern University of Science and Technology, Guandong (China). The authors have convincingly imaged the structure of the layer of thiol molecules (specifically, tert-butyl benzene thiol) terminating 5 nm diameter silver nanoparticles.

What distinguishes this work from the stripy nanoparticle oeuvre that has been discussed and dissected at length here at Raphael’s blog (and elsewhere) is the degree of care taken by the authors and, importantly, their focus on image reproducibility. Instead of using offline zooms to “post hoc” select individual particles for analysis (a significant issue with the ‘stripy’ nanoparticle work), Zhou et al. have zoomed in on individual particles in real time and have made certain that the features they see are stable and reproducible from image to image. The images below are taken from the supplementary information for their paper and shows the same nanoparticle imaged four times over, with negligible changes in the sub-particle structure from image to image.

This is SPM 101

This is SPM 101. Actually, it’s Experimental Science 101. If features are not repeatable — or, worse, disappear when a number of consecutive images/spectra are averaged – then we should not make inflated claims (or, indeed, any claims at all) on the basis of a single measurement. Moreover, the data are free of the type of feedback artefacts that plagued the ‘classic’ stripy nanoparticle images and Zhou et al. have worked hard to ensure that the influence of the tip was kept to a minimum.

Given the complexity of the tip-sample interactions, however, I don’t quite share the authors’ confidence in the Tersoff-Hamann approach they use for STM image simulation [2]. I’m also not entirely convinced by their comparison with images of isolated molecular adsorption on single crystal (i.e. planar) gold surfaces because of exactly the convolution effects they point towards elsewhere in their paper. But these are relatively minor points. The imaging and associated analysis are carried out to a very high standard, and their (sub)molecular resolution images are compelling.

As Zhou et al. point out in their paper, STM (or atomic force microscopy) of nanoparticles, as compared to imaging a single crystal metal, semiconductor, or insulator surface, is not at all easy due to the challenging non-planar topography. A number of years back we worked with Marie-Paule Pileni’s group on dynamic force microscopy imaging (and force-distance analysis) of dodecanethiol-passivated Au nanoparticles. We found somewhat similar image instabilities as those observed by Zhou et al…

A-C above are STM data

A-C above are STM data, while D-F are constant height atomic force microscope images [3], of thiol-passivated nanoparticles (synthesised by Nicolas Goubet of Pileni’s group) and acquired at 78 K. (Zhou et al. similarly acquired data at 77K but they also went down to liquid helium temperatures). Note that while we could acquire sub-nanoparticle resolution in D-F (which is a sequence of images where the tip height is systematically lowered), the images lacked the impressive reproducibility achieved by Zhou et al. In fact, we found that even though we were ostensibly in scanning tunnelling microscopy mode for images such as those shown in A-C (and thus, supposedly, not in direct contact with the nanoparticle), the tip was actually penetrating into the terminating molecular layer, as revealed by force-distance spectroscopy in atomic force microscopy mode.

The other exciting aspect of Zhou et al.’s paper is that they use pattern recognition to ‘cross-correlate’ experimental and simulated data. There’s increasingly an exciting overlap between computer science and scanning probe microscopy in the area of image classification/recognition and Zhou and co-workers have helped nudge nanoscience a little more in this direction. Here at Nottingham we’re particularly keen on the machine learning/AI-scanning probe interface, as discussed in a recent Computerphile video…

Given the number of posts over the years at Raphael’s blog regarding a lack of rigour in scanning probe work, I am pleased, and very grateful, to have been invited to write this post to redress the balance just a little. SPM, when applied correctly, is an exceptionally powerful technique. It’s a cornerstone of nanoscience, and the only tool we have that allows both real space imaging and controlled modification right down to the single chemical bond limit. But every tool has its limitations. And the tool shouldn’t be held responsible if it’s misapplied…

[1] Unless we’re talking about scanning near field optical microscopy (SNOM). That’s a whole new universe of experimental pain…

[2] This is the “zeroth” order approach to simulating STM images from a calculated density of states. It’s a good starting point (and for complicated systems like a thiol-terminated Ag374 particle probably also the end point due to computational resource limitations) but it is certainly a major approximation.

[3] Technically, dynamic force microscopy using a qPlus sensor. See this Sixty Symbols video for more information about this technique.

 

Scientific terrorist

At the 2018 American Chemical Society National Meeting in Boston, I asked a question to Chad Mirkin after his talk on Spherical Nucleic Acids. This is what I said:

In science, we need to share the bad news as well as the good news. In your introduction you mentioned four clinical trials. One of them has reported. It showed no efficacy and Purdue Pharma which was supposed to develop the drug decided not to pursue further. You also said that 1600 forms of NanoFlares were commercially available. This is not true anymore as the distributor has pulled the product because it does not work. Finally, I have a question: what is the percentage of nanoparticles that escape the endosome.

I had written my question and I asked exactly this although not in one block as he started answering before I had made all my points. He became very angry. The exchange lasted maybe 5 minutes. Towards the end he said that no one is reading my blog (who cares), that no one agrees with me, he called me a “scientific zealot” and a “scientific terrorist”. The packed room was shell shocked. We then moved swiftly to the next talk.

Two group leaders, one from North America and the other one from Europe, came to me afterwards.

Group leader 1:

Science is ever evolving and evidenced based. The evidence is gathered by first starting to ask questions. I witnessed an interaction between two scientists. One asks his questions gracefully and one responding in a manner unbecoming of a Linus Pauling Medalist. It took courage to stand in front of a packed room of scientists and peers to ask those questions that deserved an answer in a non-aggressive manner. It took even more courage to not become reactive when the respondent is aggressive and belittling. I certainly commended Raphael Levy for how he handled the aggressive response from Chad Mirkin. Even in disagreements, you can respond in a more professional manner. Not only is name calling not appropriate, revealing the outcomes of reviewers opinions from a confidential peer-review process is unprofessional and unethical.*

Lesson learned: Hold your self to a high standard and integrity.

Group leader 2:

Many conferences suffer from interesting discussions after a talk in such way that there are questions and there are answers. So far so good. Only in rare cases, a critical mind starts a discussion, or ask questions which imply some disagreement with the presented facts. Here I was surprised how a renowned expert like Chad Mirkin got in rage by such questions of Raphael Levy and how unprofessional his reaction was. It was not science any longer, it was a personal aggression, and this raises the question why Chad Mirkin acted like this? I do not think that this strategy helps to get more acceptance by the audience. I tribute to Raphael Levy afterwards, because I think science needs critical minds, and one should not be calm because of the fear to get attacked by a speaker. Science is full of statements how well everything works, and optimism is the fuel to keep research running. There is nothing wrong with this, but definitely one also need critical questions to make progress, and what we don’t need is unprofessional behavior and discreditation.

* Group leader 1 refers here to the outcome of the reviews of this article which you can read on ChemrXiv and which was (predictably) rejected by Nature Biomedical Engineering. During the incident Chad Mirkin used these reviews to attack me.

Update: some reactions on Twitter:

“re. your exchange at if being a critical thinker is a I think this is something we should all aspire to be. Good for you.” @wilkinglab

“Do you know Rapha’s blog? Not true that no one is reading it! It is the true gem and a rare truth island!” @zk_nano

“Wow, that’s shockingly uncool.” @sean_t_barry

“What an unprofessional guy.”  @SLapointeChem

“Calling a fellow researcher a “scientific terrorist” for raising concerns and asking a question (even if you disagree with them) is shocking. Sorry to hear that there wasn’t any real discussion instead, would’ve been interesting.” @bearore

“Surprised this isn’t getting more pub. One must wonder at what point does one’s ego/reputation become more important than the science, which ABSOLUTELY must include the bad with the good.” @Ben_Jimi440

“Keep fighting the good fight tenaciously, Raphael. Like the detectives in those old film noir shows… 🤜🏼🤛🏽”  @drheaddamage

 

The conference dinner chatter way of (not) correcting the scientific record

One of the common responses of senior colleagues to my attempts to correct the scientific record goes somewhat like this:

You are giving X [leading figure in the field] too much credit anyway. We all know that there are problems with their papers. We discussed it at the latest conference with Y and Z. We just ignore this stuff and move along. Though of course X is my friend etc.

This approach is unfair, elitist and contributes to the degradation of the scientific record.

First, it is very fundamentally unfair to the many scientists who are not present at these dinner table chatters and who may believe that the accumulation of grants, prizes, and high profile papers somewhat correlate with good science. That group of scientists will include pretty much all young scientists as well as most scientists from less advantadged countries who cannot get so easily to these conferences where the truth about scientific achievements is discussed between drinks at the end of a play-acting day (for inquisitive questions at the end of talks are of course also not the right way to act).

Second, it devalues fundamentally the role of the scientific record. We are basically accepting that it does not matter whether what gets published is right or wrong.  Here, I’ll insert an anecdote. I reviewed, a couple of years ago, a high profile review authored by a senior colleague in the field of nanoparticles. One of the figures highlighted a paper which I knew to be fundamentally wrong. In my review, I pointed that fact. The senior colleague did not dispute that the paper was flawed but he opted for keeping the figure, not discussing the fact the paper was wrong. His (post-modern) argument was that the  “concept” was important.

Dinner chatter is fine. But please also share your criticisms, e.g. via PubPeer.

(and by the way, if you could comment on our preprint on Spherical Nucleic Acids, that would be much appreciated)

 

The great answer to people saying that #preprints are not peer-reviewed

That perfect title is courtesy of (see tweet below)

On Monday (25/06), we will publish a preprint about the spherical nucleic acid technology. Our paper was prompted by the publication in Nature Biomedical Engineering of “Abnormal scar identification with spherical-nucleic-acid technology” by Yeo et al.

The great answer is… review them! I issued a call to review our preprint before it comes out and I have now sent the article to a number of colleagues across the world. I am very much looking forward to their comments good or bad. The comments will be posted on PubPeer. If you have some time on your hands this Friday or over the weekend to look at the paper, drop me an email and I will also send you a preview copy.

Yeo et al corresponding authors were provided with a copy of our preprint two weeks ago but unfortunately they have not responded. I hope they will post comments on PubPeer. We are planning to subsequently submit a version (hopefully improved thanks to the comments) to Nature Biomedical Engineering. It is however sometime rather difficult to debate the scientific literature through the official channels of traditional journals so this route via preprint will accelerate this important discussion.

 

Mind-boggling plagiarism of this blog

In January 2015, someone went to the effort of creating a fake raphazlab blog as the stripy nanoparticles controversy was descending from a scientific debate into the gutters of online discussions.

Fast forward three years. The Spherical Nucleic Acids controversy is slowly heating up. Chad Mirkin continues to win prizes after prizes, but he is unseemly asked to comment on the failing SmartFlare technology (the commercial name of the Spherical Nucleic Acids) by Dalmeet Singh writing for Chemistry World.

Dalmeet writes:

But Chad Mirkin, a chemist at Northwestern University in the US, who developed the precursor to SmartFlares, nanoflares, pointed Chemistry World to more than 30 papers, which, he says, have successfully used the technology.

Chemistry World contacted a number of groups that have used SmartFlares. Hirendranath Banerjee, a molecular biologist at Elizabeth City State University in North Carolina, describes SmartFlares as a ‘very novel and effective technique’, noting that it has been helpful in evaluating gene expression experiments in his lab.2

Now comes the mind-boggling part.

The introduction of Hirendranath’s paper (reference 2 above) is largely plagiarized… from this very blog. From the very first SmartFlare post on this blog, entitled How smart are the SmartFlares?

Below, is an excerpt from my post with, in red, the sentences that reference 2 copied.

RNA molecules play crucial roles in cells such as coding, decoding, regulation, and expression of genes, yet they are much more difficult to study. SmartFlares are nanoparticle-based probes for the detection and imaging of RNA in live cells. Could they become the GFP of the RNA world?

 Many certainly believe this to be the case. SmartFlare ranked second in TheScientist top ten 2013 innovations, with one of the judges, Kevin Lustig, commenting “These new RNA detection probes can be used to visualize RNA expression in live cells at the single-cell level.”  The following year, SmartFlare won an R&D100 award. The technology comes from Chad Mirkin’s lab at Northwestern University. Chad Mirkin is the winner of numerous prestigious prizes and a science adviser to the President of the United States. The scientific articles introducing the SmartFlare concept (under the name of Nano-Flare) were published in the Journal of the American Chemical Society in 2007, ACS Nano in 2009, etc. In 2013, the SmartFlare technology was licensed to EMD Millipore. Here is one of their promotional video:

For a molecular sensor to work, it needs a detection mechanism. The principle of the SmartFlare is explained from 0:45. A capture oligonucleotide (i.e. DNA) is bound to the gold nanoparticles. A reporter strand is bound to the capture strand. The reporter strand carries a fluorophore but that fluorophore does not emit light because it is too close to the gold (the fluorescence is “quenched”). In the presence of the target RNA, the reporter strand is replaced by the target RNA and therefore released, quenching stops, and fluorescence is detected.

This is plagiarism, with, in addition, a clear intent to deceive: whilst the article entire point appears to be the celebration of the SmartFlare technology, e.g concluding sentence (Thus Smart Flare novel gold nanoparticles could revolutionize the field of differential gene expression studies and drug discovery), the 2015 blog post was already doubting the validity of the technology.
I wrote to the Editor of the Journal who said that they would evaluate the claims and take some form of action. I contacted Hirendra Banerjee who declined to provide a statement; instead he issued a legal threat against the publication of this post.
Meanwhile, on Twitter
Capture
Capture
Capture
Conclusion of this exchange?
Capture