Gold nanorods to shine light on the fate of implanted stem cells


Joan Comenge

This is a guest post by Joan Comenge

Our work regarding the use of gold nanorods as contrast agents for photoacoustic tracking of stem cells has been just published (or here*). You can find all the technical details of the work there, so I will try to explain here the work for the readers who are not very familiar with our field.

It is important to have the appropriate tools to evaluate safety and efficacy of regenerative medicine therapies in preclinical models before they can be translated to the clinics. This is why there is an interest in developing new imaging technologies that enable real time cell tracking with improved sensitivity and/or resolution. This work is our contribution to this field.

To distinguish therapeutic cells from the patient’s own cells (or here from the mouse’s own cell),  the therapeutic cells have to be labelled before they are implanted. It is well known, that biological tissue is more transparent to some regions of the light spectrum than others. This fact is very easy to try at home (or at your favourite club): if you put your hand under a green light, no light will go through it, whilst doing the same under a red light the result will be very different. That means that red light is less absorbed by our body. Near infrared light is even less absorbed and this is why this region of the spectrum is ideal for in vivo imaging. Therefore, we made our cells to absorb strongly in the near infrared so we can easily distinguish them.

Gold nanoparticles of different sizes and shapes (synthesis and picture by Joan Comenge).

Gold nanoparticles of different sizes and shapes (synthesis and picture by Joan Comenge).

To do this, we labelled cells with gold nanoparticles. Interestingly, the way gold nanoparticles interact with light depends on how their electrons oscillate. That means that size and shape of the nanoparticles determine their optical properties, and this is one of the reasons why we love to make different shapes of nanoparticles. In particular, gold nanorods strongly absorb in the near infrared and they are ideal contrast agents for in vivo imaging.


Figure reproduced from: The production of sound by radiant energy; Science 28 May 1881; DOI: 10.1126/science.os-2.49.242

We have now cells that interact with light in a different way than the tissue. The problem is that light is scattered by tissue, so resolution is rapidly lost as soon as you try to image depths beyond 1 mm. Obviously, this is not the best for in vivo imaging. Luckily for us, Alexander Graham Bell realised 130 years ago that matter emits sounds when is irradiated by a pulsed light. This is known as the photoacoustic effect and it has been exploited recently for bioimaging. Photoacoustic imaging combines the advantages of optical imaging (sensitivity, real-time acquisition, molecular imaging) and the good resolution of ultrasound imaging because ultrasounds (or phonons), contrarily to photons, are not scattered by biological tissue.
GNR-35.2Si3 in cells_16

Silica-coated gold nanorods inside cells

To optimise the performance of our gold nanorods, we coated them with silica. Silica is glass and therefore it protects the gold core without interfering with its optical properties. This protection is required to maintain gold nanorods isolated inside cells since nanorods are entrapped in intracellular vesicles, where they are very packed. The absence of a protective coating ultimately would result in a broader and less intense absorbance band, which would be translated to a less intense photoacoustic signal and consequently a lower sensitivity in cell detection. This of special importance in our system, a photoacoustic imaging system developed by iThera Medical which uses a  multiwavelength excitation to later deconvolute the spectral information of the image to find your components of interest. Thus, narrow absorption bands helps to improve the detection sensitivity even further. With this we demonstrated that we were able to monitor a few thousand nanorods labelled-cells with a very good 3D spatial resolution for 15 days. This allowed for example to see how a cell cluster changed with time, see how it grows or which regions of the cell cluster shows the highest cell density. In addition, this work opens the door to new opportunities such as  multilabelling using gold nanorods of different sizes and consequently different optical properties to observe simultaneously different type of cells. We also believe that not only stem cell therapies, but also other fields that are interested in monitoring cells such as cancer biology or immunology can benefit from the advances described in our work.

You can find the original publication here (or here*).
All the datasets are available via Figshare.

This work was supported by the UK Regenerative Medicine Platform Safety and efficacy, focusing on imaging technologies. Joan Comenge was funded by the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme. The in vivo imaging was done in the Centre for Preclinical Imaging, the Electron Microscopy in the Biomedical EM unit and the Optical Microscopy in the Centre for Cell Imaging.

* the alternative link is to 50 free e-prints; the link will be removed once the paper is fully open access (in a couple of days).


Cluster of gold nanorod-labelled cells imaged by photoacoustic imaging three days after implantation in mice.


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s