A good day for science; respect to the Editor…

Earlier, I reported on the publication of our article on the internalisation of peptide-capped nanoparticles in cells. Today, I want to share with you the publication process as it happened at PloS One. The paper was submitted on the 20th of November 2014. The academic editor sent his decision, major revision, along with two referees reports on the 22nd of December, i.e. one month after submission [great turn around time!].

Reviewer 2 was very supportive but reviewer 1 much less so: there appeared to be a real difference of interpretation regarding the impact of cell-penetrating peptides on the intracellular localisation of ingested nanoparticles. The reviewer also requested additional experiments that we could not easily do at this time and that we felt were unnecessary to support our main conclusions. The academic editor himself, Dr Pedro V. Baptista [more on PloS One editorial process here], was author on a paper which in some ways could be seen as conflicting with our results and interpretation. The response to the referees and editors took me a long time to write. It was submitted on the 29th of January. I share it below.

The paper was accepted on the 6th of February. I welcome this decision, not just because our paper gets published -this is of course also great news!-, but because it demonstrates that there is space for open scientific debate in the peer reviewed literature. For this, I am immensely grateful to Dr Baptista.


Response to the referees.

Dear Dr Pedro V. Baptista

On behalf of my co-authors, I would like to thank you for handling our article and to thank the reviewers for their careful reading and for their comments.

Reviewer 2 notes that the context of our ms is the existence of conflicting reports on the effect of TAT and HA2 on intracellular fate of nanoparticles. Indeed, some articles have reported efficient access to the cytosol, while other studies indicate that most particles remain confined in endosomal compartments. Our own experiments are in line with this second group of articles. Reviewer 2 notes that “the study is well designed and executed and the results are interpreted appropriately”. Reviewer 2 supports publication in its current form.

Reviewer 1 has concerns about novelty. Reviewer 1 also suggests that we should add three references. These fall in the first category mentioned above, i.e. articles that support the notion that TAT enables access to the cytosol. It is of course appropriate that we should cite studies from both groups of articles. One of the three, […], was in fact already cited. We have now added the other two, i.e.: […]

Experiments related to this topic have led to many articles in the past 10 years. However, the persistence of conflicting reports and the importance of the topic for many envisioned applications require new insights. This we have provided through the use of imaging modalities that provide information across different scales: electron microscopy measures what occurs to a few nanoparticles in a very small part of the cell; photothermal microscopy measures what happens to the bulk of nanoparticles across a large part of the cell. This combination is thus uniquely able to address, in at least one cell type and a particular formulation of nanoparticle, the fate of TAT-functionalised nanoparticles after they bind to the cell surface.

Below we respond to the detailed queries of reviewer 1 and trust that the manuscript now meets the standards required for publication in PLOS One.

Dr Raphaël Lévy, rapha@liverpool.ac.uk

Detailed response to reviewer 1 queries:
• Novelty. Our article is a significant piece of work that adds useful information towards understanding and clarifying the impact of cell penetrating peptides on intracellular localisation of nanoparticles. The work is novel because it builds on a new imaging methodology that directly images the nanoparticle cores (as opposed to an attached fluorescent molecule) and gives a better overview of an entire cell than just electron microscopy. It is also novel because our peptide self-assembled monolayer approach enables us to do systematic variations of the surface chemistry of the nanoconjugates.
• “To include as a new figure, the extinction spectra of all the nanoconjugates as well as all the scattering spectra […]”. The reviewer is right that extinction spectra are very useful to characterise functionalisation and colloidal stability. We have added the requested figure as Fig. S0. For the conjugates used in Fig. 1, the formation of the self-assembled monolayers results in a minimal shift of the plasmon band of ~1-3 nm. This shift is small compared to the width of the plasmon peak. Because photothermal microscopy relies on absorption at the wavelength of our heating laser which matches the position of the maximal absorbance, differences due to a 1-3 nm plasmon shift are negligible. Interestingly, particles presenting a higher percentage of TAT in their monolayer do show a larger plasmon shift indicative of aggregation. We have modified the paragraph on the formation of the SAMs as follows: “Formation of the monolayer was immediately visible because of the increased colloidal stability and of a small red shift of the nanoparticles plasmon band (Fig. S0). Higher proportions of TAT in the monolayer resulted in nanoparticle aggregation and therefore were not used for further studies (Fig. S0).”

• “To include the images and quantification in Figure 1 with cells only with naked gold nanoparticles and cells only with PEG-gold nanoparticles and compare intensities.” The images and quantification for “cells only” were already included (Fig. 1A and first column of Fig. 1F). We have not included “naked gold”. Instead, as a reference point, we have used PEG-gold particles that have a capping composition made of CALNN and CCALNN-PEG. “naked gold” does not remain naked: non-specific adsorption of proteins, e.g. serum albumin in the cell medium, very rapidly changes the properties of the surface [see for example, Time Evolution of the Nanoparticle Protein Corona, Casals et al., ACS Nano, 2010, 4, pp 3623–3632]. The CALNN and CCALNNPEG composition was optimised, as discussed p 7, line 213-220 and Fig. S2 “Gold nanoparticles uptake decreases with increasing percentages of CCALNN-PEG”. The selected composition leads to minimal uptake as shown in Fig. 1B and the second column in Fig. 1F. From this reference composition, we have made systematic variations where we include defined percentages of the two functional peptides (dHA2 and TAT). For all these conditions, exemplary images are shown in Fig. 1 A-E, additional images are shared via figshare (http://dx.doi.org/10.6084/m9.figshare.1088379) and the quantifications are shown in Fig. 1F.

• “To perform other technique to quantify the gold content […].To include more time points in the TEM studies […]. […] the efficacy results reported by the authors are premature without the additional data described above.” While we agree that the suggested experiments are interesting, they are not necessary to reach the conclusions arrived at in the ms. Those conclusions do not concern “efficacy”, but increased uptake and intracellular localisation. The increase in photothermal signal as well as in the counts of nanoparticles in EM images unambiguously demonstrate increased uptake. The non-homogenous distribution of signal observed in the photothermal images and the electron microscopy analyses unambiguously rule out cytosolic distribution of the nanoparticles. The time point of 3 hours used in our studies is a key point both from the perspective of applications and of cell entry mechanisms. We agree that a systematic analysis as a function of time after uptake would provide further insights into endocytotic mechanisms, but it is outside of the focus of this study. Furthermore, it has been done extensively by cell biologists since the 1950s using a variety of probes. Notably, one of the first applications of gold nanoparticles in biology precisely focused on the mechanisms by which cells probe their external environment (Electron microscopy of HeLa cells after ingestion of colloidal gold, Harford et al., J Biophys Biochem Cytol 1957 3:749-756; reference added into the ms).

The standards in the field have been to publish only one or two representative electron
microscopy images. The photothermal imaging provides a unique means for the reader to understand nanoparticle distribution over biologically representative scales. Importantly, we are sharing here 942 EM images and 37 photothermal images. By publishing all of our data alongside the study [1], we enable other scientists to check and challenge our conclusions and propose alternative hypotheses. PLoS One is a particularly good forum for our article because of its commenting platform where this discussion can continue in the open after the publication of the article.
[1]. DOIs of the data:

10.6084/m9.figshare.1088379, 10.6084/m9.figshare.875584, 10.6084/m9.figshare.875630, 10.6084/m9.figshare.875545, 10.6084/m9.figshare.875477, 10.6084/m9.figshare.874219, 10.6084/m9.figshare.874153, 10.6084/m9.figshare.874033, 10.6084/m9.figshare.873852, 10.6084/m9.figshare.1088399, 10.6084/m9.figshare.1246458, 10.6084/m9.figshare.1246609,
10.6084/m9.figshare.1246622, 10.6084/m9.figshare.1246660, 10.6084/m9.figshare.1246696, 10.6084/m9.figshare.1246707

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s